

Toward Greater Understanding of Upstream and Downstream Manufacturing Processes of Automotive Li-ion Batteries

Advanced Automotive Batteries Conference

June 19-22, 2016 | | San Francisco, CA

Ahmad Mayyas, Emma Elgqvist, Donald Chung

National Renewable Energy Laboratory

Agenda

- Critical Materials for LIBs
- LIB Raw Materials Supply Chain
- Manufacturing Methods of LIB Materials
- Cost Analysis for LIB Materials Production
- LIB Pack Assembly and Cost
- VI. Conclusions

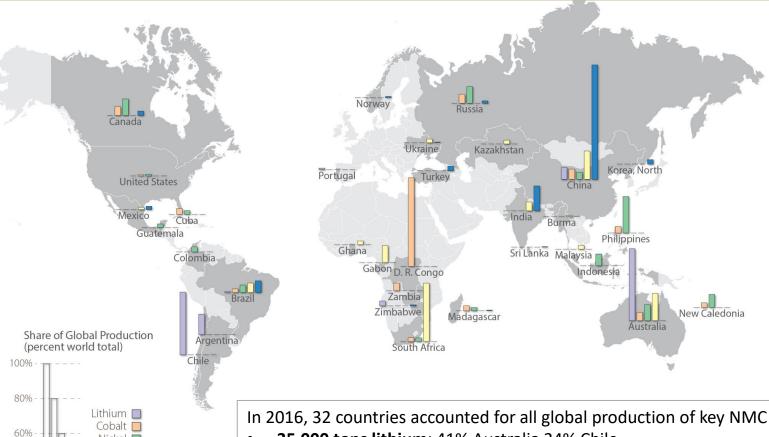
Critical Materials for LIBs

Critical Materials for LIB

Materials used in Li-ion batteries have low to medium criticality ratings

 Study by Joint Research Center (JRC) in the European Commission on critical materials shows that several of the elements used in the manufacturing of lithium ion batteries (LIBs) are considered critical

Table 1: Criticality ratings of shortlisted raw materials


High	High-Medium	Medium	Medium-Low	Low
REE: Dy, Eu, Tb, Y	Graphite	REE: La, Ce, Sm, Gd	Lithium	Nickel
REE: Pr, Nd	Rhenium	Cobalt	Molybdenum	Lead
Gallium	Hafnium	Tantalum	Selenium	Gold
Tellurium	Germanium	Niobium	Silver	Cadmium
	Platinum	Vanadium		Copper
	Indium	Tin		
		Chromium		

LIBs Raw Materials Supply Chain

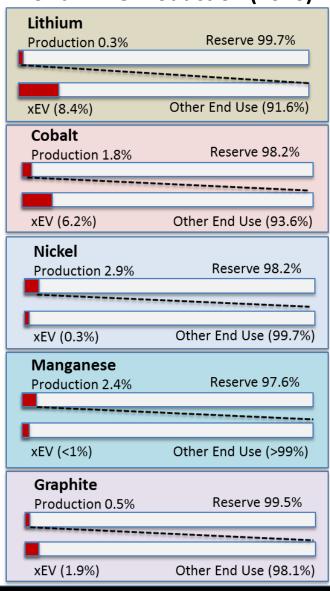
LIB Supply Chain – Raw Materials

In 2016, 32 countries accounted for all global production of Li, Co, Ni, Mn and Graphite, with 50% of production of each element originating in one or two countries.

In 2016, 32 countries accounted for all global production of key NMC materials

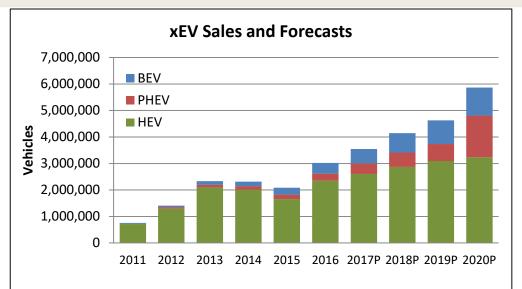
- 35,000 tons lithium: 41% Australia 34% Chile
- 1.2 million tons natural graphite: 65% China, 14% India
- **2.25 million tons nickel**: 22% Philippines, 11% Russia, 11% Canada, 9% Australia
- 18,000 tons manganese: 34% South Africa, 17% China, 16% Australia
- **123,000 tons cobalt**: 54% Democratic Republic of Congo

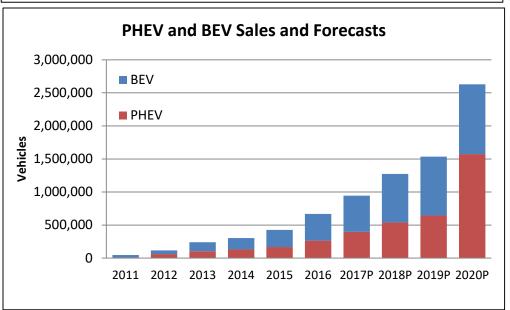
*Data withheld


Manganese 🔲

20%

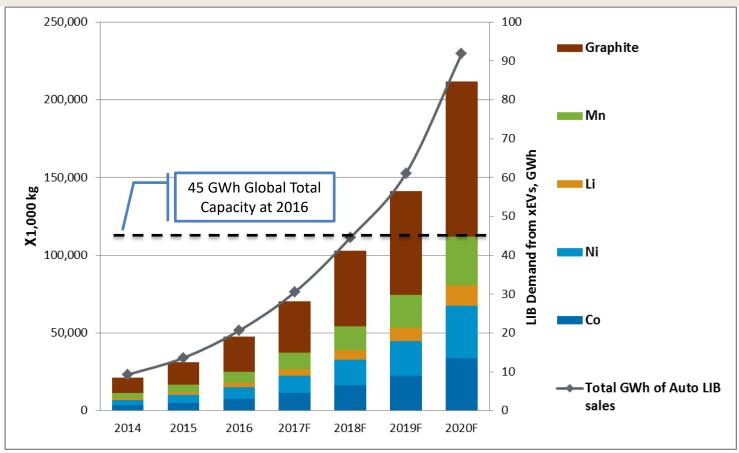
Graphite |


LIB Supply Chain – Raw Materials



- Elements critical for LIB manufacturing do not constitute the majority end use of any of these elements
- Based on estimated battery designs and 2016 EV sales figures, approximately 8% of lithium, 6% of cobalt, <1% of nickel, <1% of manganese, and 2% of graphite produced in 2016 were used for EV battery manufacturing
- Current reserves of these elements continue to change as known deposits are depleted, and as new ones are discovered. These reserves are also based on economically extractable resources – driven by markets and technology
- For all these elements, 2016 mining production represented less than 3% of estimated reserves.

BEV, PHEV Sales Steady - HEV Sales Slow



- Total xEV sales grew rapidly 2012-2016 @ 17% CAGR
- Hybrid Electric Vehicles (HEVs)
 - 50% CAGR 2011-2016
 - But, sales flat to declining 2013-2015
 - 8% CAGR forecast 2017-2020
- Plug-in Hybrid Electric Vehicles (PHEVs)
 - 34% CAGR 2011-2016
 - 56% CAGR forecast 2017-2020
- Battery Electric Vehicles (BEVs)
 - 44% CAGR 2011-2016
 - 42% CAGR forecast 2017-2020

Sources: BNEF 2016; Navigant 2015; Technavio 2015; Roland Berger 2015; International Energy Agency (IEA) 2015; NREL estimates

xEV LIB Demand vs. Materials

- 25% CAGR in LIB forecast from 2017-2020
- LIB demand estimates are driven by BEVs and PHEVs
- Assumed energy storage requirements: 1 kWh for HEVs; 10 kWh for PHEVs; 35 kWh for BEVs
- Total automotive Li-ion battery capacity is expected to exceed 90 GWh by 2020
- This requires more than 120 million kg of battery materials (Li, Co, Mn, Ni, and Gr) by 2020

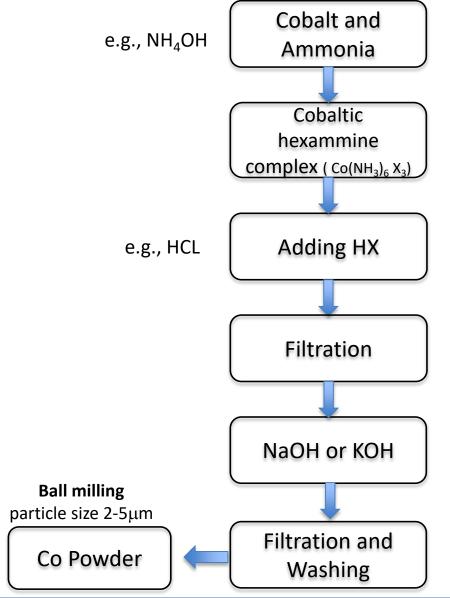
Sources: BNEF 2016; Navigant 2015; Technavio 2017; Roland Berger 2015; International Energy Agency (IEA) 2015; Oak Ridge National Laboratory (ORNL) 2015; NREL estimates

Manufacturing Methods of LIB Materials

Methods of Powder Production

Mechanical methods:

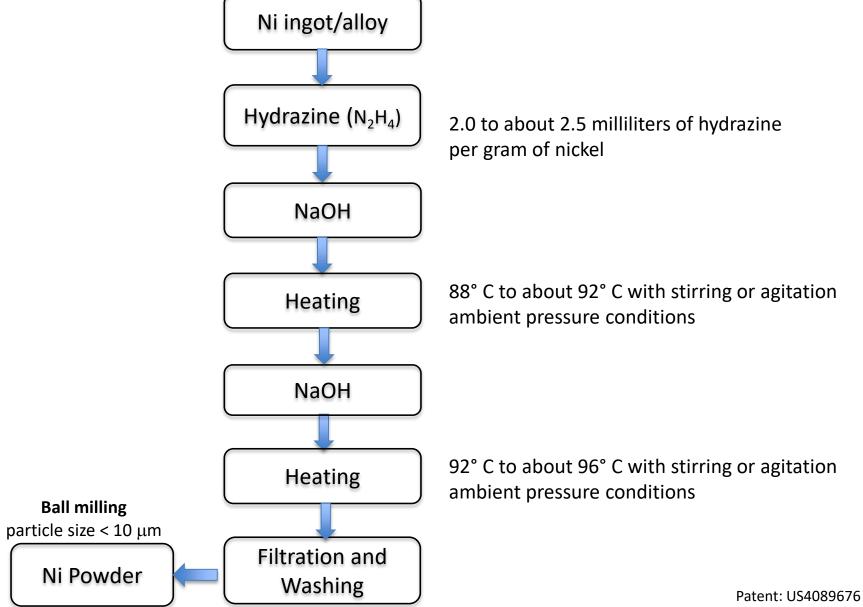
- i) Chopping or Cutting
- ii) Abrasion methods
- iii) Machining methods
- iv) Milling
- v) Cold-stream Process


Chemical methods:

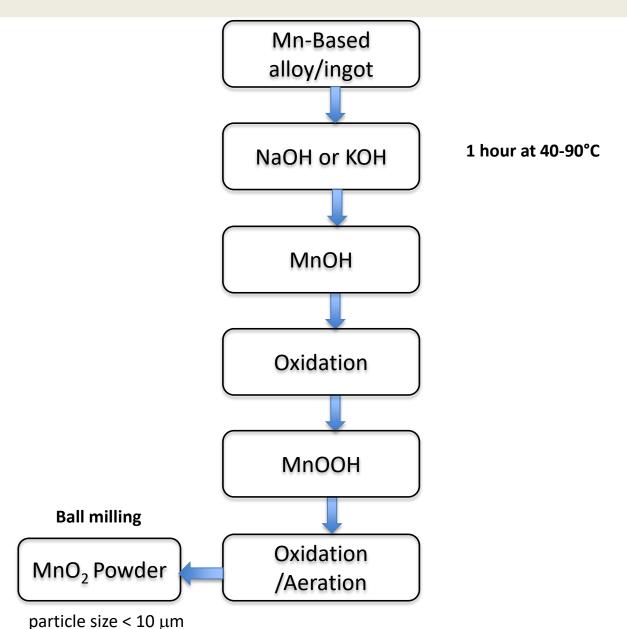
- i) Precipitation from solutions
- ii) Reduction of oxides
- iii) Thermal decomposition of compounds
- iv) Hydride decomposition
- v) Thermit reaction
- vi) Electro- chemical methods

Precipitation from solutions is one of the most economic and high yield processes

Co Powder Preparation

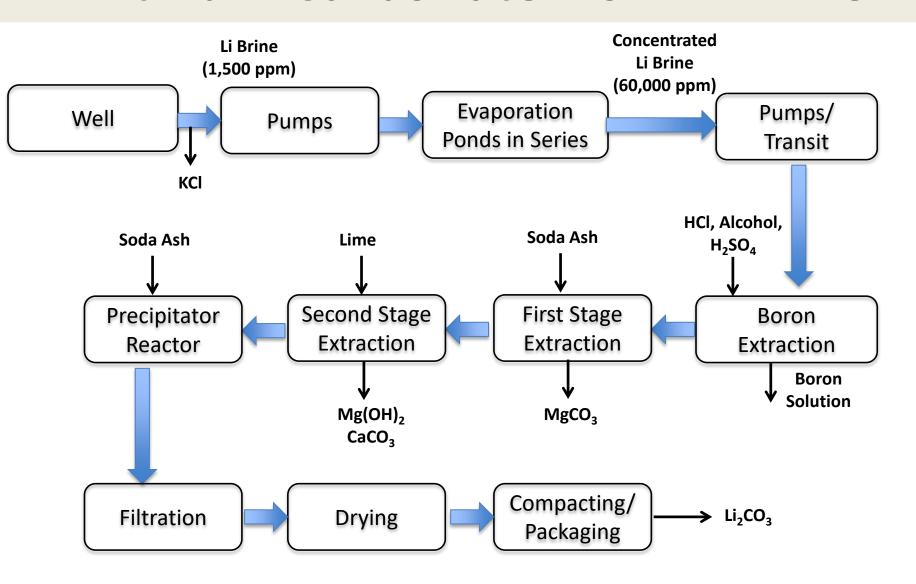


Catalyst
Ammonium hydroxide (or Ammonia)
10-80°C


The acid used is preferably a hydrogen halide of the formula HX wherein X is fluorine, chlorine, bromine, or iodine.

Patent: US4218240

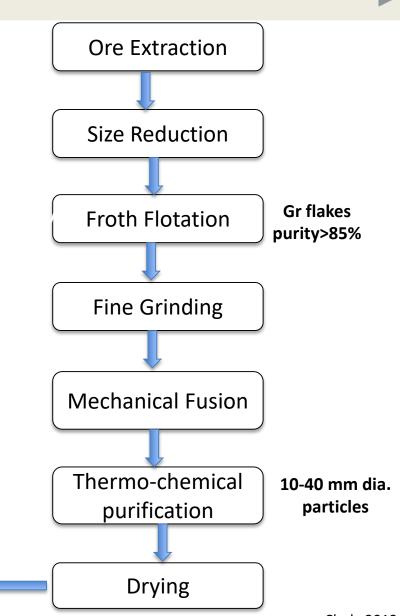
Ni Powder Preparation



MnO₂ Powder Preparation

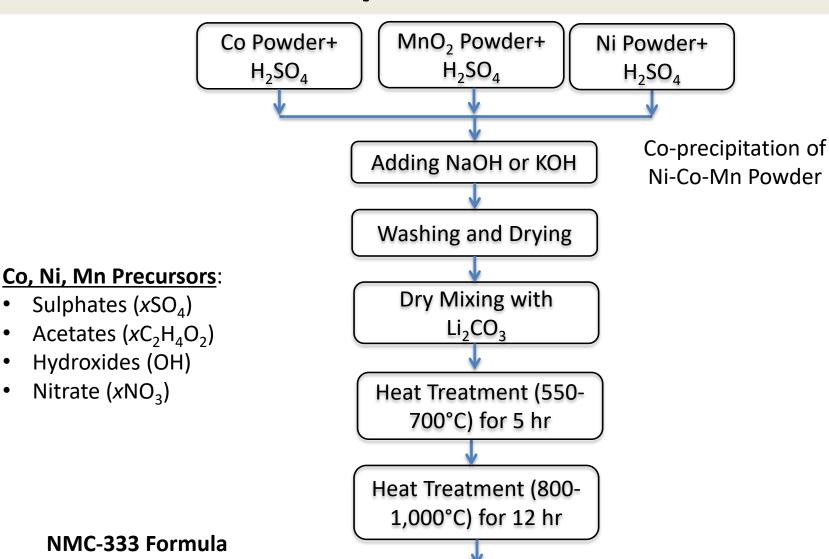
Patent: US4006217

Lithium Carbonate from Li Brine


LIB Cell Materials- Graphite

To optimize performance

Coating with


Nano-Gr

- Flake graphite commonly minor constituent in crystalline metamorphic rocks
- For Li-ion battery applications, typical graphite purity is 98-99.95%

Clark, 2013

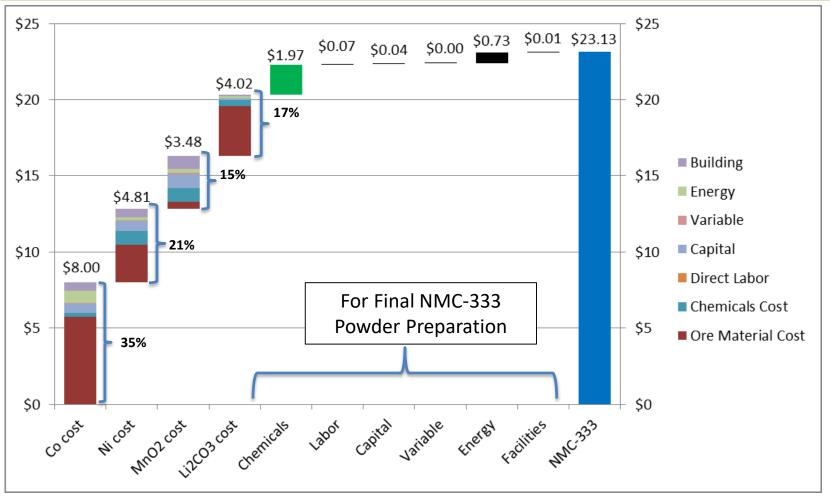
NMC Powder Preparation

Classification &

Packaging

Hashem et al., 2015 Zhang et al., 2011 Wang et al., 2004

 $Li_{1.05}(Ni_{1/3}Mn_{1/3}Co_{1/3})_{0.95}O_2$


Nitrate (xNO_3)

Cost Analysis for LIB Materials Production

NMC Powder Cost

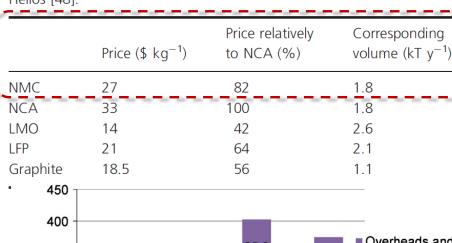
Ore-grade materials share about 52% of the final NMC-333 material followed by chemicals with 11% cost share

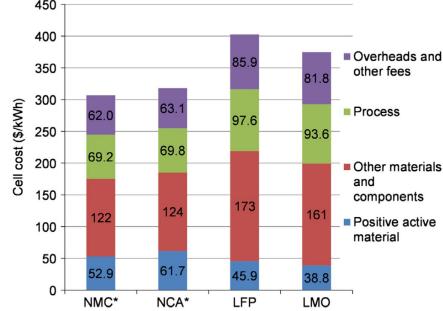
• Chemical for NMC-333 powder preparation prior to cell manufacturing. <u>Doesn't include</u> cost of chemicals used in purifying Co, Ni, Mn, or Li. (Annual production= 1 million kg/yr)

NMC Powder Preparation

While other cathode materials seem to have lower costs in relative to the NMC; NMC still provides lower \$/kW cell cost among common cathode materials.

Table 1. Thickness of the positive and negative electrodes for each material for a maximum coating thickness of 50 μ m.

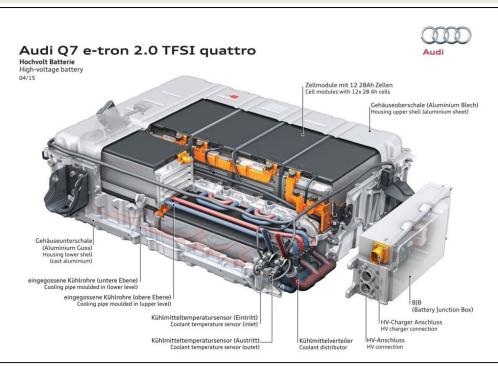

	Positive electrode coating thickness (μm)	Negative electrode coating thickness (μm)
NMC // Gr	49.0	50.0
NCA // Gr	45.0	50.0
LMO // Gr	50.0	30.4
LFP // Gr	50.0	34.2

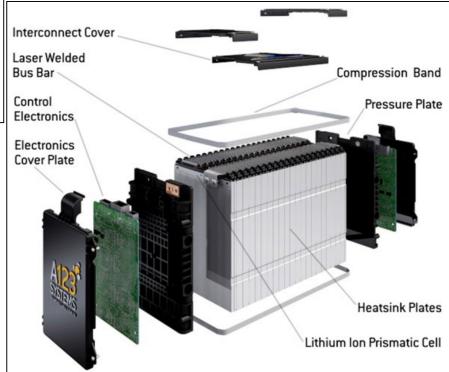

Table 3. Prices of cell materials and components.

Carbon black conductor	7.15 \$ kg ⁻¹
NMP binder	$27.6 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Electrolyte	19.5 \$ kg ⁻¹
Aqueous binder	$10 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Binder solvent	$3.2 \ \text{kg}^{-1}$
Current collector, Al	$0.8 \ \text{m}^{-2}$
Current collector, Cu	$1.7 \ \text{m}^{-2}$

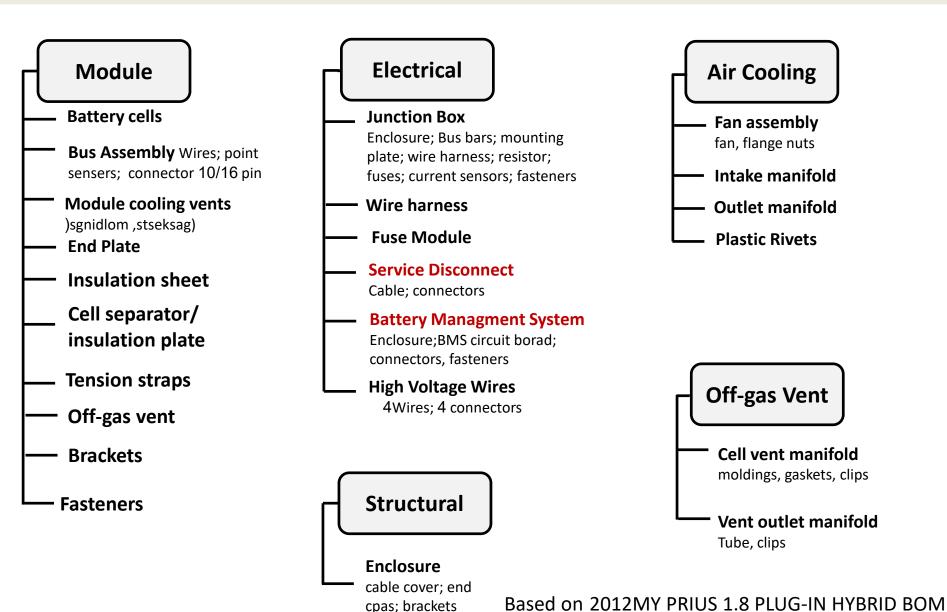
- The process cost includes direct labor, equipment depreciation, operating and maintenance costs, indirect factory costs, and infrastructure costs.
- The cells were designed using the cell design model from the ANL (BatPac)

Table 2. Prices of active materials obtained in the European project Helios [48].

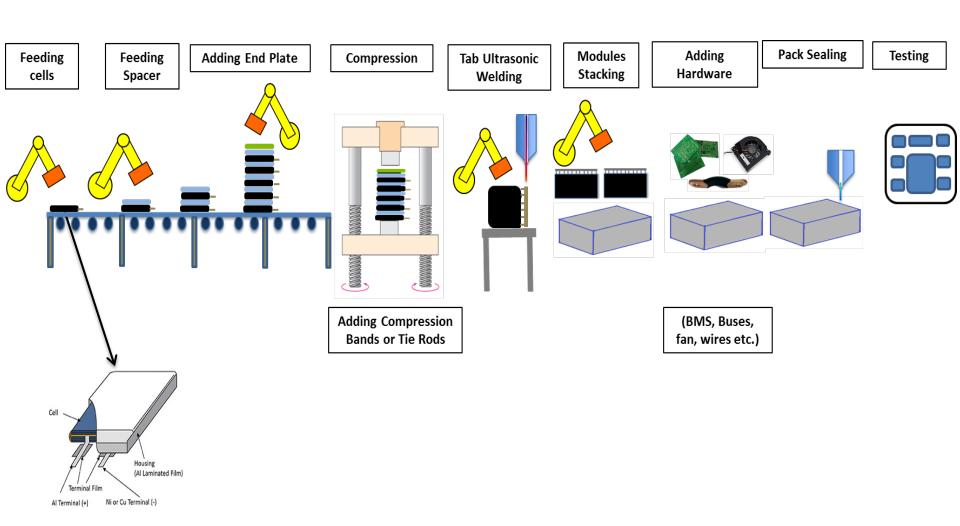



Patry et al., 2015

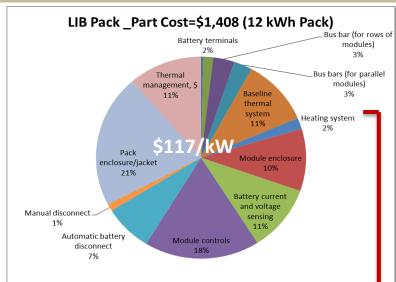
V

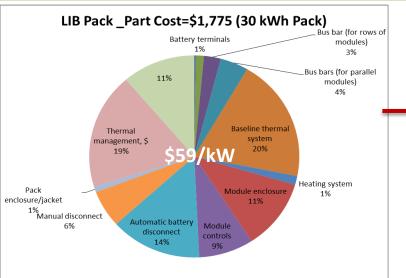

LIB Pack Assembly and Cost

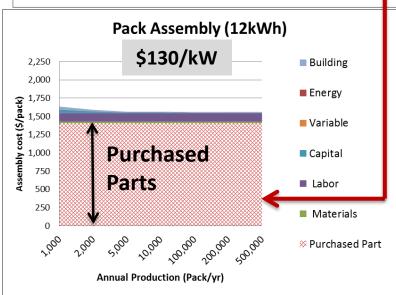
LIB Battery Packs

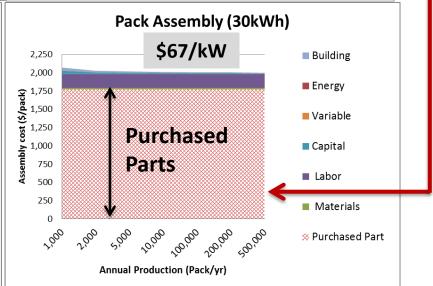

LIB Battery Pack Components

Assembly Line of LIB Pack

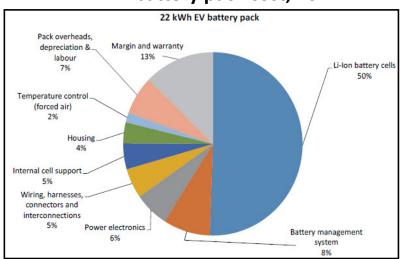



Today, LIB manufacturers use fully automatic pack assembly lines

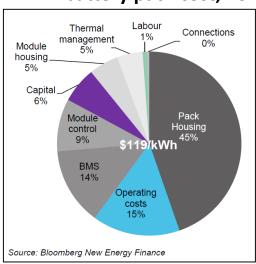



LIB Pack Assembly Cost

Purchased parts share more than 88% of pack assembly cost (excluding cells cost)



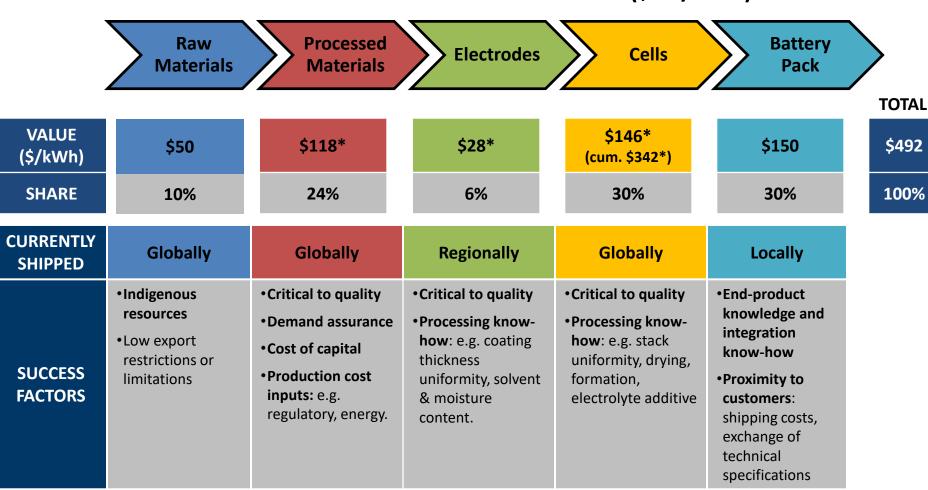
..... If Compared to Other Cost Studies


22 kWh battery pack cost, 2012

Parts	Percentage	Cost
BMS	8%	\$1,408
Module Control	n/a	n/a
Module Housing	n/a	n/a
Thermal Management	2%	\$352
Power Electronics	6%	\$1,056
Wiring, harnesses and		
interconnects	5%	\$880
Pack Housing	4%	\$704
Internal cell support	5%	\$880
Pack overheads,		
depreciation & labor	7%	\$1,232
Total	37% of systems cost	\$6,512

Source: Element Energy, 2012, BNEF 2016

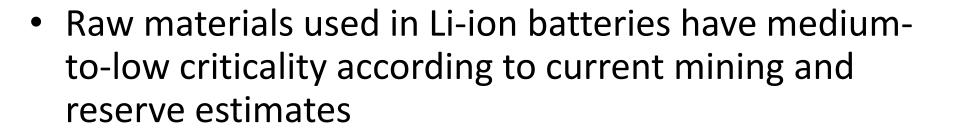
24 kWh battery pack cost, 2015



Parts	Percentage	Cost
Pack Housing	45%	\$1,285
BMS	14%	\$400
Module Control	9%	\$257
Module Housing	5%	\$143
Thermal Management	5%	\$143
Capital Cost	6%	\$171
Operating cost	15%	\$428
Labor	1%	\$29
Total	100%	\$2,856

A US plant producing 1 GWh/year has <u>cell costs</u> of \$265/kWh, battery packs at \$384/kWh.

Key xEV LIB Value Chain Characteristics



- Using 2015 analysis for electrodes and cells costs
- Example: factory gate shipping from Asia to the west coast of the United States adds approximately \$7/kWh Sources: NREL estimates; BNEF (2014)

Conclusions

Conclusions

 Consumption of Li, Co, Ni, Mn and Gr in xEV manufacturing still accounts for less than 9% of the total annual productions in 2016, however, these ratios are estimated to increase by 4-5x by 2020

 Module and pack parts make up about 30% of total LIB pack cost, the majority of cost savings are expected at the cell level

Thank you

Ahmad Mayyas (<u>Ahmad.Mayyas@nrel.gov</u>) www.manufacturingcleanenergy.org

A Critical Role

The Clean Energy Manufacturing Analysis Center understands manufacturing's critical role in the new energy economy. Learn more about the CEMAC mission and vision.

Objective, Insightful

CEMAC analysis illuminates supply chains and manufacturing across energy sectors. Learn more about CEMAC's products and publications.

Work With CEMAC

CEMAC is ready to work with you. Learn how the Clean Energy Manufacturing Analysis Center's world-class analysis can support your work.

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Vehicle Technologies Office and the Joint Institute for Strategic Energy Analysis (JISEA). The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Notes

- Materials mined are reported in metric tons
 Total GWh of automotive lithium ion battery cells
 sold in 2016; 20.4 GWh based on vehicle sales data
 and average pack capacities of HEVs, PHEVs, and
 BEVs (http://insideevs.com/ev-battery-makers-2016-panasonic-and-byd-combine-to-hold-majority-of-market/)
- Assumptions for material requirements per cell: kWh per cell: 0.072 kWh; grams of element per gram of NMC: Co: 0.1987; Ni 0.1979; Li 0.0776; Mn 0.1852; grams of material per cell: NMC: 133 grams; Graphite: 78 grams/cell

References

R.L. Moss, E. Tzimas, P.Willis, J.Arendorf, L.Tercero Espinoza et al. 2013. Critical Metals in the Path towards the Decarbonisation of the EU Energy Sector.

http://www.google.ca/patents/US4218240

http://www.google.com/patents/US4089676

http://www.google.ca/patents/US4006217

J.B. Dunn, L. Gaines, M. Barnes, J. Sullivan, and M. Wang. 2012. Material and Energy Flows in the Materials Production, Assembly, and End-of-Life Stages of the Automotive Lithium-Ion Battery Life Cycle. ANL/ESD/12-3 Rev.

Ahmed. M. Hashem*, Rasha. S. El-Tawil, Mohamed Abutabl, Ali. E. Eid. Pristine and coated LiNi1/3Mn1/3Co1/3O2 as positive electrode materials for li-ion batteries. *Res. Eng. Struct. Mat.*, 2015; 1: 81-97.

Peixin Zhang, Li Zhang, Xiangzhong Ren*, Qiuhua Yuan, Jianhong Liu, Qianling Zhang. Preparation and electrochemical properties of LiNi1/3Co1/3Mn1/3O2—Ppy composites cathode materials for lithium-ion battery. Synthetic Metals 161 (2011) 1092—1097 Zhaoxiang Wang,z Yucheng Sun, Liquan Chen, and Xuejie Huang. Electrochemical Characterization of Positive Electrode Material LiNi1Õ3Co1Õ3Mn1Õ3O2 and Compatibility with Electrolyte for Lithium-Ion Batteries. *Journal of The Electrochemical Society*, **151** (6) A914-A921 (2004)

Gerry M Clark. Lithium-ion batteries, Raw Material Consideration. 2013 American Institute of Chemical Engineers (AIChE)

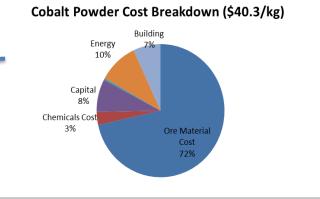
Gaetan Patry, Alex Romagny, Sebastien Martinet & Daniel Froelich. Cost modeling of lithium-ion battery cells for automotive applications. Energy Science and Engineering 2015; 3(1): 71–82

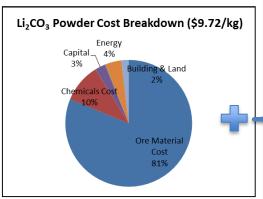
Behl, Jiten. 2015. "Automotive Lithium-Ion Batteries — Status and Outlook." presented at the The Battery Show, Novi, MI, September 15.

BNEF (Bloomberg New Energy Finance) Desktop Portal. 2016. https://www.bnef.com/core/.

Davis, Stacy, Susan Diegel, Robert Boundy, and Sheila Moore. 2015. "2014 Vehicle Technologies Market Report." ORNL/TM-2015/85. Oak Ridge, TN: Oak Ridge National Laboratory.

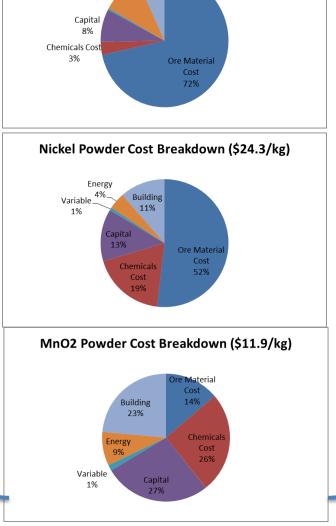
http://cta.ornl.gov/vtmarketreport/pdf/2014 vtmarketreport full doc.pdf.

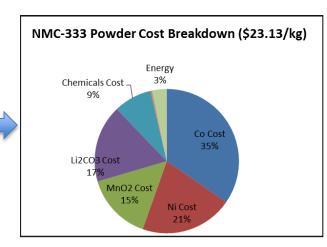

"Global EV Outlook 2015 Update." 2015. International Energy Agency (IEA).

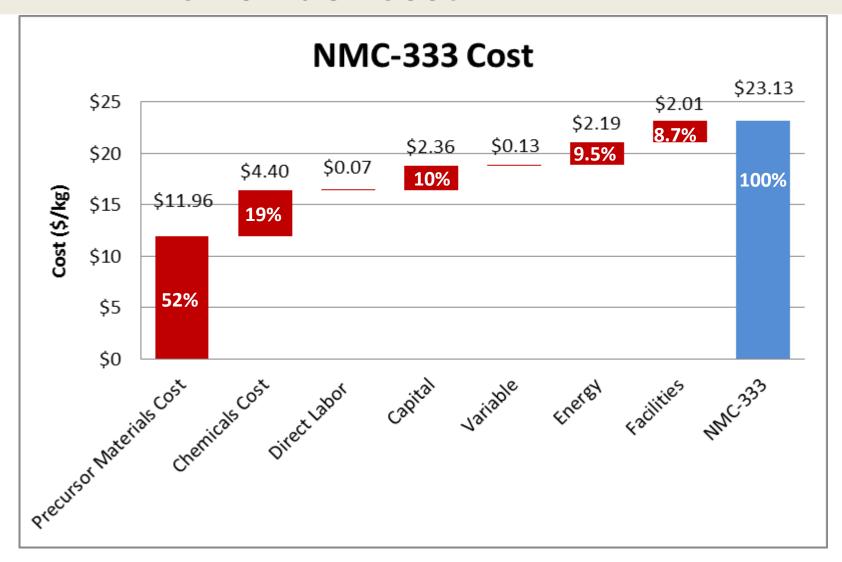

http://www.iea.org/evi/Global-EV-Outlook-2015-Update 1page.pdf.

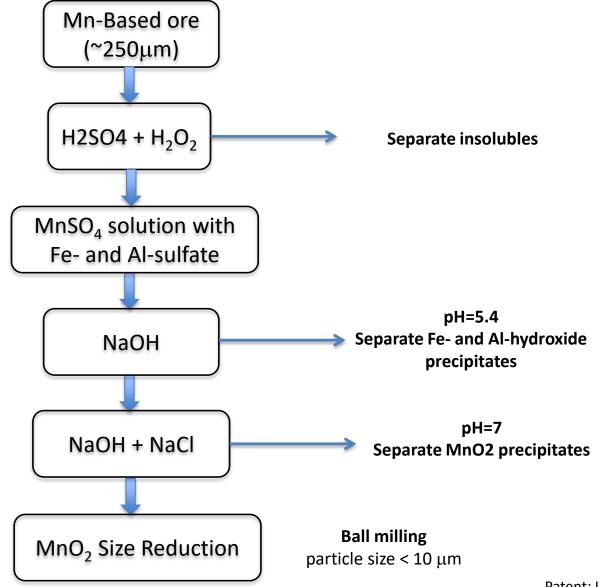
Shepard, Scott, and Lisa Jerram. 2015. "Transportation Forecast: Light Duty Vehicles." Boulder, CO: Navigant Consulting, Inc. Technavio Insights. 2015. "Global Li Ion Battery Market for All Electric Vehicles (AEVs)." Market Research Report.


Appendix

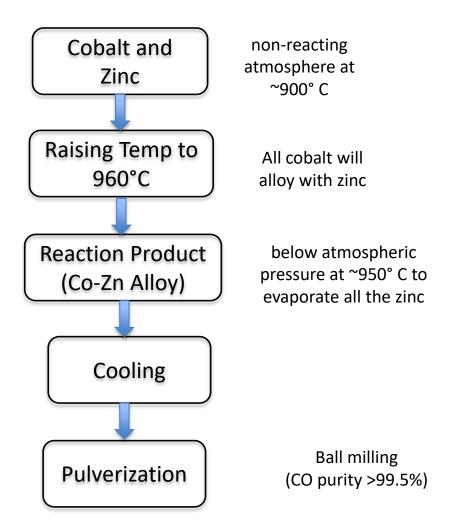

NMC Powder Cost




Ore Grade Price [†]	Price (\$/kg)
Со	28.8
Ni	12.6
MnO ₂	1.63



NMC Powder Cost


^{*} Chemicals Cost <u>includes</u> all chemicals used in purifying Co, Mn, Ni, Mn, Li and NMC-333 powders. Annual production= 1 million kg/yr

MnO₂ Powder Preparation

Patent: US2822243

Co Powder Preparation

Patents: US4816069

NMC Powder Cost

NMC cost estimates from 3M; 2016

	■ Me			
Co Price \$/kg	NMC 442	LCO	NMC 111	LCO - NMC 442
30	9.38	18.06	11.19	8.68
40	10.36	24.08	13.22	13.72
60	12.32	36.12	17.29	23.8
80	14.28	48.17	21.37	33.89
100	16.25	60.21	25.44	43.96
120	18.21	72.25	29.51	54.04
140	20.17	84.3	33.59	64.13

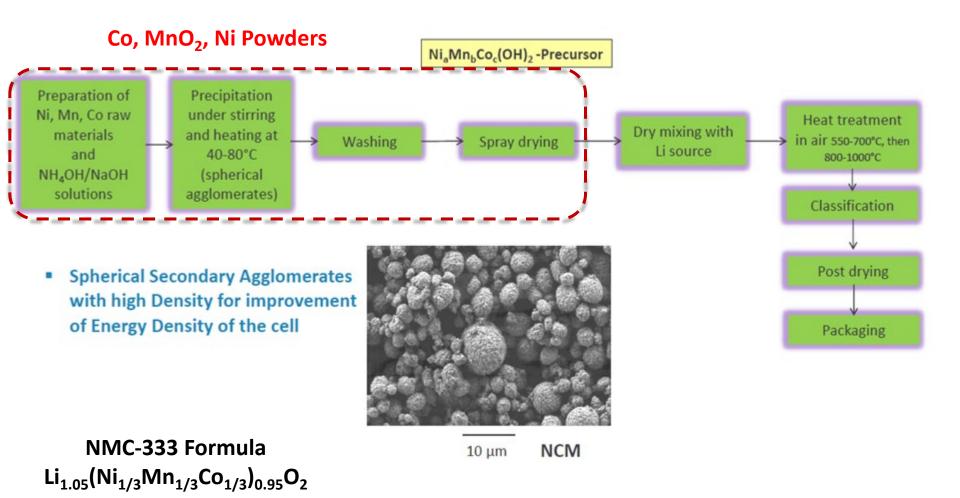
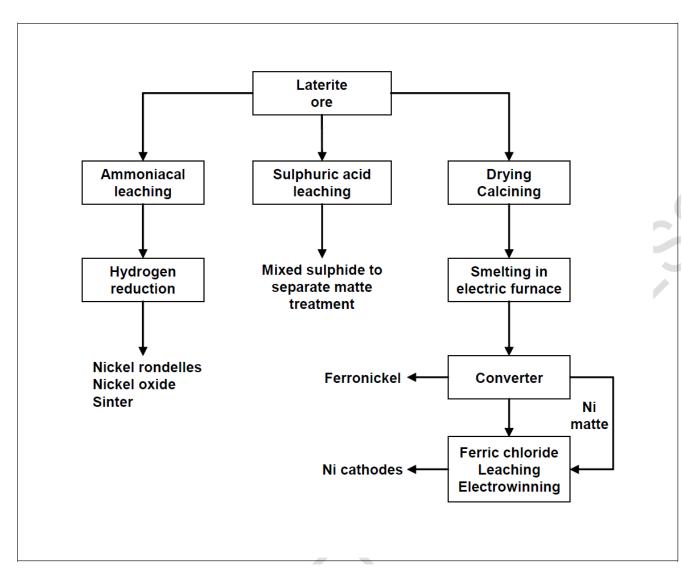
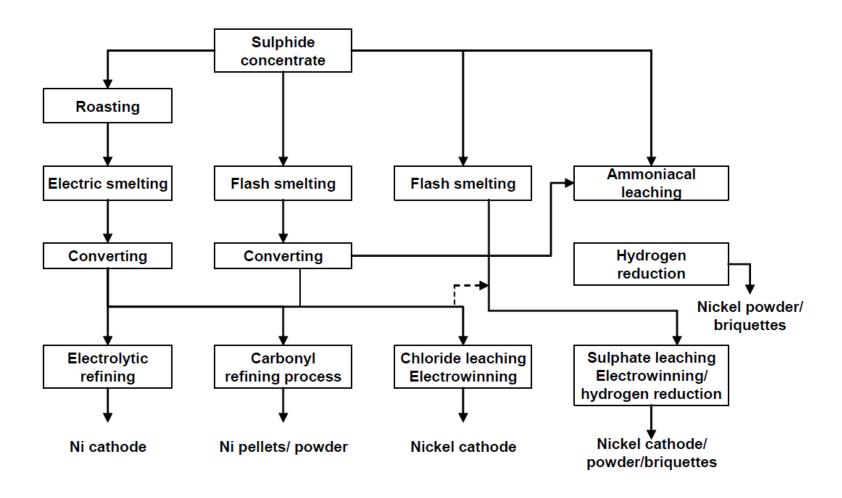

NMC cost estimates from American Institute of Chemical Engineers (AIChE) 2013

	Table 2. Cathode material performance characteristics relative to key design metrics.							
	Cathode	Gravimetric Energy Density, Wh/kg*			Price, \$/kg			
	LFP (LiFePO ₄)	500 (3.8 V)	+	+	+	15–22		
	LMFP (LiMn _x Fe _{1-x} PO ₄)	570 (4.3 V)	+	0	+	15–22		
	LMO (LiMn ₂ O ₄)	480 (4.3 V)	+	0	+	12–15	Ī	
	LCO (LiCoO ₂)	570 (4.3 V)	+	+	0	30–70	L	
	LNMC (LiNi _x Mn _y Co _{1-x-y} O ₂)	570–690 (4.3 V)	0	0	-	20–50		
Ī	LLNMC (xLi ₂ MnO ₃ •(1–x)LiMO ₂)	960 (4.6 V)		1	0	20–40		
	LNMO (LiNi _{1/2} Mn _{3/2} O ₄)	630 (5.0 V)	+	0	0	15–25		
	LCP (LiCoPO ₄)	720 (5.0 V)	+	0	0	20–50		
	* Values in parentheses are charge voltage vs. Li ⁰ .							

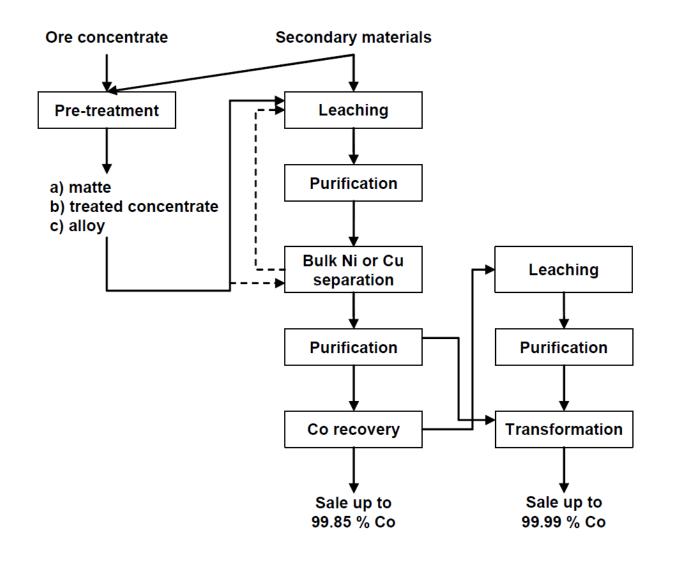
Key: (+) Clear strength, (-) Clear improvement opportunity, (0) Neither a strength nor weakness


3M.com (AIChE) 2013

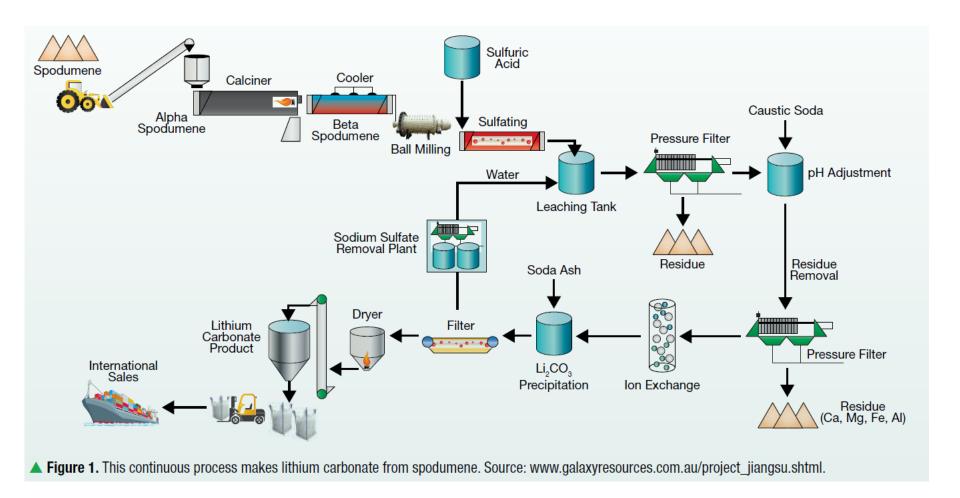
NMC Powder Production


LIB Cell Materials- Nickle

Nickel is produced from oxidic (laterite and saprolite) or sulphidic ore, about 60 % of the nickel comes from sulphide deposits and 40 % from oxide deposits

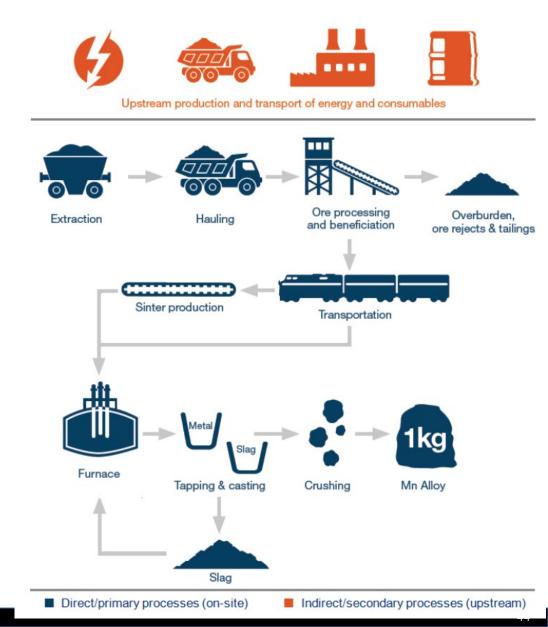

Generic flowsheet for nickel production from laterite ores

LIB Cell Materials- Nickle



Generic flowsheet for the production of nickel from sulphide concentrates

LIB Cell Materials- Cobalt



LIB Cell Materials- Lithium

LIB Cell Materials- Manganese

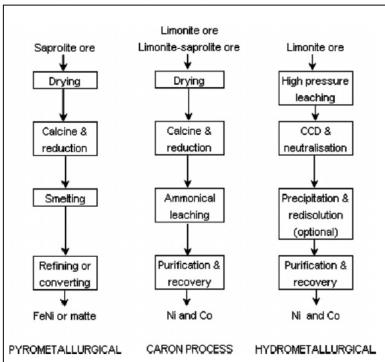
Material/Energy	Cost (USD)
Manganese Ore	\$140/t
Manganese Sinter	\$224/t
Ferromanganese Alloy	\$872
Electricity	\$70/MWh
Diesel	\$1.05/L
Coal	\$65/t
Coke	\$250/t

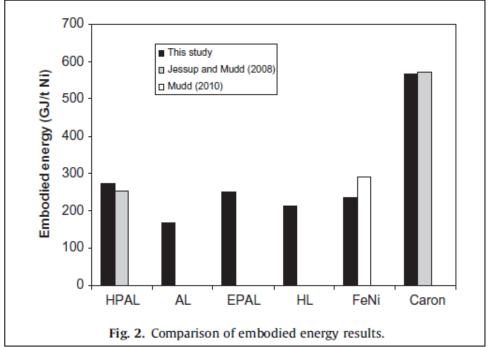
LIB Cell Materials- Manganese

Table 7: Industry average energy consumption and greenhouse gas emissions by supply chain stage per tonne of ferromanganese production.

Process Stage	Primary Energy Demand (GJ)	Global Warming Potential (tCO2e)	Grid Power (kWh)	Diesel (kg)	Coal (kg)	Coke (kg)	Explosives (kg)
Extraction	0.6	0.08		13.9			3.2
Ore Processing & Beneficiation	0.9	0.10	37	19.0			
Sinter Production	3.0	0.30	32	7.3	35	49	
Smelting	26.0	4.27	2811		149	372	
Casting, Crushing & Screening	1.4	0.31	268	3.5			
Total Supply Chain	31.9	5.06	3148	43.6	184	421	3.2

	Material Cost	Energy Cost	Total Cost
Extraction	460.00	334.60	794.60
Ore Processing & Refining		26.57	26.57
Sinter Production		25.98	25.98
Smelting		299.46	299.46
Casting, crushing &			
Screening		23.18	23.18
Transportation		2.52	2.52
Total (\$/ton)			1172.30


LIB Materials- Nickel


LCA results for nickel laterite processing routes.

Process	Embodied energy (GJ/t Ni) ^a	GHG emissions (t CO	Overall nickel recovery (%)	
		With acid plant	Without acid plant	
Hydrometallurgical				
High pressure acid leach	272	22.7	27.3	92
Atmospheric acid leach	167	14.6	25.1	80
Enhanced pressure acid leach ^b	249	17.8	23.2	85
Heap leach	211	17.6	28.0	73
Pyrometallurgical				
Ferronickel	236	NA	22.4	95
Pyro/hydrometallurgical				
Caron process	565	NA	44.8	80

a Includes sulfur feedstock energy of 84–126 GJ/t Ni (depending on hydrometallurgical processing route) with on – site acid plant – corresponds to approximately 35 t steam (high and low pressure) per tonne of nickel.

b Based on 78% HPAL and 22% AL

Norgate and Jahanshahi, 2011

Bat-Pac Architecture

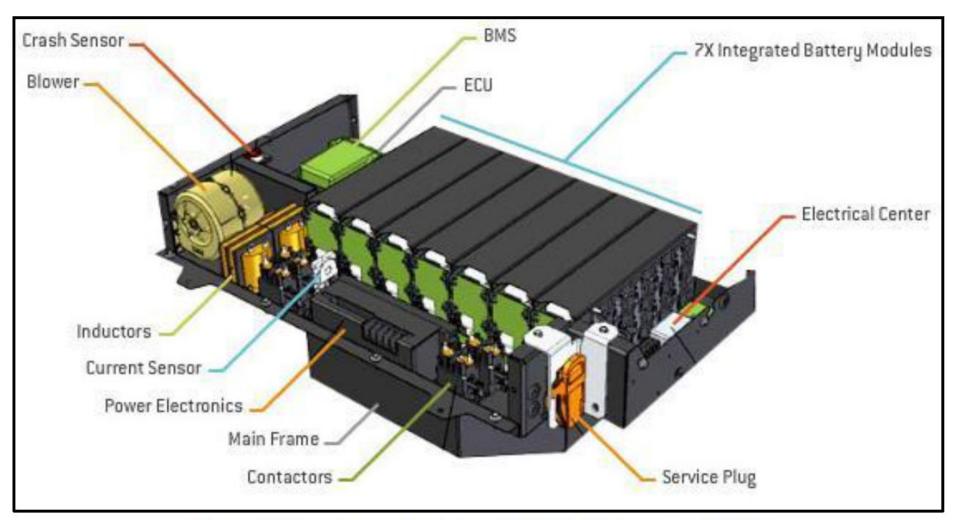


Figure 2: Li-Ion Battery Pack for a PHEV (A123 Systems, 2008b)

Battery Assembly Lines from Dürr

MODULE ASSEMBLY

https://www.youtube.com/watch?v= QEXZz14QL0

Equipment

Machine	Cost (\$)	Notes
Robots (3 robots)	150,000	Staubli Robots
Hot Press	100,000	
Ultrasonic/Laser Welding Machine	200,000	
QC System (Optical System)	50,000	http://www.google.com/patents/ US20130305835
Seal Dispenser (Robotic Arm)	50,000	http://www.google.com/patents/ US20030096162
Charging/Station Testing (Bank of 6 stations from GE)	24,000	GE DURASTATION DOUBLE EVDN3 EV CHARGING STATION 30 AMP
Assembly line	574,000	

Charging Station

6-axis robot

STAUBLE

Hydraulic Press

Ultrasonic Tab welder

LIB Pack- Purchased Parts

Battery size (kWh)	4	8	12	16	30	85	BatPac (4 kWh)
Purchased Parts; \$							
Module Inter-connectors and signal wiring	\$4.4	\$4.4	\$4.4	\$4.4	\$4.4	\$4.4	\$9.3
Module compression plates and steel straps							\$1.0
Battery terminals	\$21.9	\$21.9	\$21.9	\$21.9	\$21.9	\$21.9	\$21.0
Bus bar for battery packs with one row of modules	\$46.0	\$46.0	\$46.0	\$46.0	\$46.0	\$46.0	\$20.0
Bus bars for battery packs with parallel modules	\$23.0	\$32.0	\$40.0	\$49.0	\$77.0	\$110.0	\$0.0
Bus bars for interconnecting multiple battery packs							\$0.0
Baseline thermal system	\$90.0	\$120.0	\$150.0	\$180.0	\$350.0	\$450.0	\$120.0
Heating system	\$25.0	\$25.0	\$25.0	\$25.0	\$25.0	\$25.0	\$20.0
Module Enclosure	\$70.0	\$70.0	\$70.0	\$70.0	\$70.0	\$70.0	\$67.8
Pack integration (BMS & disconnects), \$							
Battery current and voltage sensing	\$150.0	\$150.0	\$150.0	\$150.0	\$150.0	\$150.0	\$100.0
Module controls	\$250.0	\$250.0	\$250.0	\$250.0	\$250.0	\$250.0	\$80.0
Automatic battery disconnect	\$104.0	\$104.0	\$104.0	\$104.0	\$104.0	\$104.0	\$200.0
Manual disconnect	\$16.0	\$16.0	\$16.0	\$16.0	\$16.0	\$16.0	\$15.0
Pack Enclosure/Jacket	\$260.0	\$280.0	\$300.0	\$320.0	\$330.0	\$400.0	\$260.0
Estimated cost to OEM for thermal management, \$	\$120.0	\$160.0	\$160.0	160	200	200	160
Total Module & Pack Part Cost	1,180	1,279	1,337	1,396	1,644	1,847	1,074

www.nrel.gov

NREL/PR-6A20-68596

